I - Divisibilité dans $\mathbb Z$

Définition 1 : Diviseur d'un enter relatif

Soient a et b deux entiers relatifs.

Dire que a divise b signifie qu'il existe un entier relatif k tel que b = ka. On note généralement $a \mid b$.

Exemples –

- 1. 70 divise 210 car $210 = 3 \times 70$
- 2. -12 divise 24 car $24 = -2 \times (-12)$

— Remarques —

- 1. Tout entier relatif divise 0
- 2. Tout entier relatif a admet pour diviseurs -1, 1, -a et a

Propriété 1 : Transitivité de la divisibilité

Soient a, b et c trois entiers relatifs tels que a et b sont non nuls.

Si $a \mid b$ et $b \mid c$ alors $a \mid c$

Propriété 2

Soient a, b deux entiers relatifs non nuls.

Si $a \mid b$ et $b \mid a$ alors a = b ou a = -b.

Propriété 3 : Divisibilité et combinaisons linéaires

Soient a, b et c trois entiers relatifs tels que $a \neq 0$.

Si $a \mid b$ et $a \mid c$ alors $a \mid b + c$ et $a \mid b - c$.

Plus généralement,

 $a \mid ub + vc$ où $u \in \mathbb{Z}$ et $v \in \mathbb{Z}$

Exercices

- 1. Soit un entier $n \ge 2$. Montrer que $n 1 \mid n^2 1$.
- 2. Soient $n \in \mathbb{Z}$ et $a \in \mathbb{Z}$ tels que $a \mid n+4$ et $a \mid 2n-3$. Montrer que $a \mid 11$.
- 3. Déterminer les entiers relatifs tels que $2n-5 \mid n+3$.

II - Division euclidienne

 \bigcap Propriété 4: Existence et unicité de la division euclidienne dans $\mathbb N$

Soient $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$.

Il **existe** un **unique** couple d'entiers naturels (q, r) tels que a = bq + r et $0 \le r < b$.

– Exemples –

- 1. $57 = 8 \times 7 + 1$ est la division euclidienne de 57 par 7
- 2. $211 = 13 \times 16 + 3$ est la division euclidienne de 211 par 16
- 3. $48 = 6 \times 8 + 0$ est la division euclidienne de 48 par 6

- Remarque -

Dire que $a \mid b$ équivaut à dire que le reste de la division euclidienne de a par b est nul. Voir le dernier exemple précédent.

Définition 2 : Division euclidienne

Soient $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$.

Effectuer la division euclidienne dans \mathbb{N} de a par b, c'est déterminer le couple (q,r) d'entiers naturels, tel que

$$a = bq + r$$
 et $0 \le r < b$

q est le **quotient** et r est le **reste** de la division euclidienne.

$egin{aligned} egin{aligned} egin{aligned} \mathbf{P} & \mathbf{Propriété} & \mathbf{5} : \mathbf{Division} & \mathbf{euclidienne} & \mathbf{dans} & \mathbb{Z} \end{aligned}$

La division euclidienne se généralise dans \mathbb{Z} . Soient $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$.

Il **existe** un **unique** couple d'entiers relatifs (q,r) tels que a = bq + r et $0 \le r < |b|$.

Exercice

Effectuer la division euclidienne de -1159 par 24.

🖰 Conséquence très importante

Soit $b \in \mathbb{N}^*$ et $n \in \mathbb{Z}$.

En effectuant la division euclidienne de n par b, tout entier relatif n s'écrit n = bq + r où $q \in \mathbb{Z}$ et $0 \le r \le b-1$

- Exemple -

Avec b=2. Tout nombre entier n s'écrit sous la forme n=2k ou n=2k+1 où $k\in\mathbb{Z}$. Autrement dit, tout nombre entier est soit pair, soit impair.

III - Congruences dans \mathbb{Z}

Définition 3 : Congruence de deux entiers

Soient $a, b \in \mathbb{Z}$ et $n \in \mathbb{N}^*$. Dire que a et b sont **congrus modulo** n signifie que a et b ont le même reste dans la division euclidienne par n. On écrit $a \equiv b[n]$ (ou $a \equiv b(n)$ ou $a \equiv b \pmod{n}$).

Propriété 6 : Définition équivalente

Soient $a, b \in \mathbb{Z}$ et $n \in \mathbb{N}^*$. $a \equiv b[n]$ si et seulement si $n \mid a - b$.

- Exemple

- 1. $21 = 4 \times 5 + 1$ et $25 = 4 \times 6 + 1$ donc $21 \equiv 25$ [4]
- 2. $-19 (-5) = -14 = -2 \times 7 \text{ donc } -19 \equiv -5 [7]$

Propriété 7 : Divisibilité et congruences

Soient $a \in \mathbb{Z}$ et $n \in \mathbb{N}^*$. $n \mid a$ si et seulement si $a \equiv 0 [n]$.

Propriété 8 : Division euclidienne et congruences

Soient $a \in \mathbb{Z}$ et $n \in \mathbb{N}^*$. r est le reste de la division euclidienne de a par n si et seulement si $a \equiv r[n] \text{ et } 0 \leq r < n.$

Propriété 9 : Propriétés de la relation de congruence

Soient $a, b, c \in \mathbb{Z}$ et $n \in \mathbb{N}^*$.

- 1. $a \equiv a[n]$
- 2. Si $a \equiv b[n]$ alors $b \equiv a[n]$
- 3. Si $a \equiv b[n]$ et $b \equiv c[n]$ alors $a \equiv c[n]$

Propriété 10 : Opérations sur les congruences

Soient $a, b, c, d \in \mathbb{Z}$ et $n \in \mathbb{N}^*$. Alors

1. Somme de congruences

Si
$$a \equiv b[n]$$
 et $c \equiv d[n]$ alors $a + c \equiv b + d[n]$ et $a - c \equiv b - d[n]$.

2. Produit de congruences

Si
$$a \equiv b[n]$$
 et $c \equiv d[n]$ alors $ac \equiv bd[n]$.

3. Puissances d'une congruence

Si
$$a \equiv b[n]$$
, alors $\forall p \in \mathbb{N}^*$, $a^p \equiv b^p[n]$.

4. Produit et somme par un entier

Si
$$a \equiv b[n]$$
, alors $\forall c \in \mathbb{Z}$, $a + c \equiv b + c[n]$ et $ac \equiv bc[n]$.