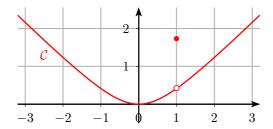
$\mathbf{\hat{E}}_{\mathrm{chauffement}}$


Chapitre 6 Continuité

1

Soit f la fonction définie sur $\mathbb R$ par :

$$f(x) = \begin{cases} \sqrt{x^2 + 1} - 1 & \text{si } x \in \mathbb{R} \setminus \{1\} \\ \alpha & \text{si } x = 1 \end{cases}$$

de graphe $\mathcal C$ dans le repère ci-dessous où • indique un point qui est sur $\mathcal C$ et • un point qui n'est pas sur $\mathcal C$.

- 1. Justifier que f n'est pas continue sur \mathbb{R} .
- 2. Donner les valeurs de f(1) et des limites de f en 1 à gauche et à droite.
- 3. Que doit valoir α pour que f soit continue?

2

Soit la fonction h définie sur $\mathbb{R} \setminus \{1\}$ par :

$$h(x) = \frac{2x^3 + x - 1}{x^3 - 1}$$

et \mathcal{C} sa courbe représentative dans un repère.

- 1. Donner les limites de h en $+\infty$ et en $-\infty$ puis en 1.
- 2. En déduire les équations des asymptotes à C.

3

Soit la fonction $x \mapsto \sqrt{\frac{5x}{3x-5}}$ et $\mathcal C$ sa courbe représentative dans un repère.

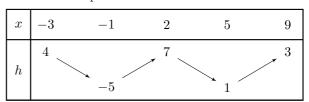
- 1. Déterminer l'ensemble de définition \mathcal{D} de f.
- 2. Écrire f comme composée de deux fonctions.
- 3. Étudier les limites de f aux bornes de son ensemble de définition et en déduire les équations des asymptotes à C.

4

Soit k un entier et f une fonction définie sur \mathbb{R} . Déterminer k pour que f soit continue sur \mathbb{R} .

Determiner
$$k$$
 pour que f soi
$$f(x) = \begin{cases} x^2 - 5 & \text{si } x < 1\\ k & \text{si } x \geqslant 1 \end{cases}$$

5


La fonction f définie sur $[-1; +\infty[$ par :

$$f(x) = \begin{cases} \frac{x+1}{\sqrt{x+1}} & \text{si } x > -1\\ 1 & \text{si } x = -1. \end{cases}$$

est-elle continue en -1?

6

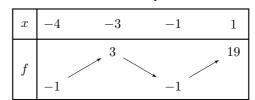
Une fonction h a pour tableau de variation :

- 1. Justifiez que h(x) = 0 possède une unique solution sur l'intervalle :
 - (a) [-3; -1];
 - (b) [-1; 2].
- 2. Justifiez que h(x) = 0 ne possède pas de solutions sur l'intervalle [2 ; 9].
- 3. Donner le signe de la fonction h sur [-3; 9].

7

Une fonction g a pour tableau de variation :

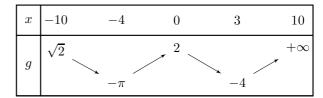
x	$-\infty$	-4	0	3	$+\infty$
g	3	-1	<i>2</i> \	1	7


- 1. Quel est l'ensemble de définition de cette fonction?
- 2. Déterminer le nombre de solutions de g(x) = 0. (en le justifiant)
- 3. Discuter en fonction de k le nombre de solutions de l'équation g(x) = k.

Q

Soit la fonction f définie sur I = [-4; 1] par :

$$f(x) = x^3 + 6x^2 + 9x + 3$$


dont les variations sont données par le tableau suivant :

- 1. Justifier que f est continue sur I.
- 2. Dénombrer les solutions de l'équation f(x) = 2.
- 3. (a) Justifier que l'équation f(x) = 4 admet une unique solution α .
 - (b) Déterminer un encadrement de α à l'unité près.

O

Une fonction q a pour tableau de variation :

Discuter, suivant la valeur de k, le nombre de solutions de l'équation g(x) = k.