Fonctions primitives

- 1 La fonction $x \mapsto \ln(x)$ admet pour primitive sur]0; $+\infty[$ la fonction :
- **a.** $x \longmapsto \ln(x)$
- **b.** $x \longmapsto \frac{1}{x}$
- **c.** $x \longmapsto x \ln(x) x$ **d.** $x \longmapsto \frac{\ln(x)}{x}$
- 2 Si H est une primitive d'une fonction h définie et continue sur \mathbb{R} , et si k est la fonction définie sur \mathbb{R} par $\overline{k(x)} = h(2x)$, alors, une primitive K de k est définie sur $\mathbb R$ par :
 - **a.** K(x) = H(2x)
- **b.** K(x) = 2H(2x) **c.** $K(x) = \frac{1}{2}H(2x)$ **d.** K(x) = 2H(x)
- Soit f la fonction définie sur \mathbb{R} par $f(x) = xe^{x^2}$. La primitive F de f sur \mathbb{R} qui vérifie F(0) = 1 est définie par :
- **a.** $F(x) = \frac{x^2}{2} e^{x^2}$;

b. $F(x) = \frac{1}{2}e^{x^2}$

c. $F(x) = (1+2x^2) e^{x^2}$;

- **d.** $F(x) = \frac{1}{2}e^{x^2} + \frac{1}{2}e^{x^2}$
- Parmi les primitives de la fonction f définie sur \mathbb{R} par $f(x) = 3e^{-x^2} + 2$:
- toutes sont croissantes sur \mathbb{R} ;

- **b.** toutes sont décroissantes sur \mathbb{R} ;
- certaines sont croissantes sur $\mathbb R$ et d'autres décroissantes sur \mathbb{R} ;
- **d.** toutes sont croissantes sur $]-\infty$; 0] et décroissantes
- 5 On considère la fonction f définie sur]-1; 1[par $f(x)=\frac{x}{1-x^2}$
- Une primitive de la fonction f est la fonction g définie sur l'intervalle]-1; 1[par :
- **a.** $g(x) = -\frac{1}{2}\ln(1-x^2)$

b. $g(x) = \frac{1+x^2}{(1-x^2)^2}$

c. $g(x) = \frac{x^2}{2\left(x - \frac{x^3}{2}\right)}$

- **d.** $g(x) = \frac{x^2}{2} \ln(1 x^2)$
- 6 On considère la fonction f définie sur \mathbb{R} par $f(x) = x^3 e^{-x^2}$. Si F est une primitive de f sur \mathbb{R} ,
- **a.** $F(x) = -\frac{1}{6}(x^3 + 1)e^{-x^2}$

b. $F(x) = -\frac{1}{4}x^4e^{-x^2}$

c. $F(x) = -\frac{1}{2}(x^2 + 1)e^{-x^2}$

- **d.** $F(x) = x^2 (3 2x^2) e^{-x^2}$
- 7 Soit g la fonction définie pour tout nombre réel x de l'intervalle]0; $+\infty[$ par $g(x)=\frac{2\ln x}{x}$.

Soit f la fonction définie sur l'intervalle $[0; +\infty[$ par $f(x) = [\ln(x)]^2$.

Démontrer que sur l'intervalle $[0; +\infty[$, la fonction f est une primitive de la fonction g.

8 Soit f la fonction définie sur]0; $+\infty[$ par $f(x) = x^2 \ln x$.

Une primitive F de f sur]0; $+\infty[$ est définie par :

a. $F(x) = \frac{1}{3}x^3 \left(\ln x - \frac{1}{3} \right);$

b. $F(x) = \frac{1}{3}x^3(\ln x - 1);$

c. $F(x) = \frac{1}{3}x^2$;

- **d.** $F(x) = \frac{1}{2}x^2(\ln x 1).$
- 9 Soit f la fonction définie sur \mathbb{R} par $f(x) = (x^2 + 1) e^x$.

La primitive F de f sur \mathbb{R} telle que F(0) = 1 est définie par :

a. $F(x) = (x^2 - 2x + 3) e^x;$ **c.** $F(x) = (\frac{1}{3}x^3 + x) e^x + 1;$

- **b.** $F(x) = (x^2 2x + 3) e^x 2;$ **d.** $F(x) = (\frac{1}{3}x^3 + x) e^x.$
- 10 Soit f la fonction définie sur \mathbb{R} par $f(x) = x e^{x^2+1}$.

Soit F une primitive sur $\mathbb R$ de la fonction f. Pour tout réel x, on a :

a. $F(x) = \frac{1}{2}x^2 e^{x^2+1}$

b. $F(x) = (1 + 2x^2) e^{x^2 + 1}$ **d.** $F(x) = \frac{1}{2} e^{x^2 + 1}$

c. $F(x) = e^{x^2+1}$