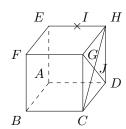
$\mathbf{E}_{ ext{chauffement}}$

Chapitre X - Produit scalaire dans l'espace

1 On considère un cube ABCDEFGH de côté a > 0. Soient I le milieu de [EH] et J le centre de la face CDHG.



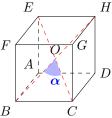
Exprimer en fonction de a les produits scalaires :

- 1. $\overrightarrow{AB} \cdot \overrightarrow{FH}$ 4. $\overrightarrow{FG} \cdot \overrightarrow{GD}$ 7. $\overrightarrow{BJ} \cdot \overrightarrow{EJ}$
- 2. $\overrightarrow{HC} \cdot \overrightarrow{GD}$ 5. $\overrightarrow{IH} \cdot \overrightarrow{FG}$ 8. $\overrightarrow{BI} \cdot \overrightarrow{BA}$
- 3. $\overrightarrow{GH} \cdot \overrightarrow{GJ}$ 6. $\overrightarrow{IG} \cdot \overrightarrow{IH}$
- 9. $\overrightarrow{FJ} \cdot \overrightarrow{CH}$

2 Dans l'espace muni d'un repère orthonormé $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$, calculer les produits scalaires suivants :

- 1. $\vec{u}.\vec{v}$ où \overrightarrow{u} $\begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$ et \overrightarrow{v} $\begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}$
- 2. $\overrightarrow{AB}.\overrightarrow{AC}$ où A(1;0;2), B(-2;3;-1) et C(1;-1;0)
- 3. $\vec{u}.\vec{v}$ où $\vec{u}=3\vec{i}-\vec{j}+2\vec{k}$ et $\vec{v}=-2\vec{j}-3\vec{k}$

3 On considère un cube ABCDEFGH de côté 1 et de centre O.



Calculer une valeur approchée de la mesure de l'angle

 $\alpha = \widehat{BOC}$ au degré près.

4 Dans un repère orthonormé $(0, \vec{\imath}, \vec{\jmath}, \vec{k})$, on considère les points A(1;-2;3), B(-1;0;1) et C(2;1;0). Calculer, au dixième de degré près, une mesure des angles :

- 1. \widehat{ABC}
- \widehat{BAC}
- 3. \widehat{ACB}

5 On se place dans un repère orthonormé $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$. Dans chacun des cas suivants, dire si les vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux:

- 1. \overrightarrow{u} $\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$; \overrightarrow{v} $\begin{pmatrix} 3 \\ 3 \\ -1 \end{pmatrix}$ 3. \overrightarrow{u} $\begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix}$; \overrightarrow{v} $\begin{pmatrix} -3 \\ 4 \\ 24 \end{pmatrix}$
- 2. \overrightarrow{u} $\begin{pmatrix} \sqrt{2} \\ -2\sqrt{2} \\ 1 \end{pmatrix}$; \overrightarrow{v} $\begin{pmatrix} \sqrt{2} \\ \sqrt{2} \\ 2 \end{pmatrix}$ 4. \overrightarrow{u} $\begin{pmatrix} -\sqrt{3} \\ 1 \\ 2 \end{pmatrix}$; \overrightarrow{v} $\begin{pmatrix} 1 \\ \sqrt{3} \\ \sqrt{3} \end{pmatrix}$
- 6 Dans l'espace muni d'un repère orthonormé $(O\,;\,\overrightarrow{i}\,,\,\overrightarrow{j}\,,\,\overrightarrow{k}\,), \text{ on considère } \overrightarrow{u} \begin{pmatrix} k \\ -2 \\ k-1 \end{pmatrix} \text{ et } \overrightarrow{v} \begin{pmatrix} 2 \\ k \\ k \end{pmatrix}, \text{ où }$

 $k \in \mathbb{R}$. Déterminer la ou les valeurs de k pour que \overrightarrow{u} et \overrightarrow{v} soient orthogonaux.

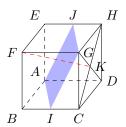
7 Les droites d_1 et d_2 définies par les représentations paramétriques respectives sont-elles orthogonales? Perpen-

$$\left\{ \begin{array}{l} x=-t\\ y=2+t\\ z=-1+2t \end{array} \right.,\, t\in \mathbb{R} \quad \text{et} \quad \left\{ \begin{array}{l} x=1\\ y=2s\\ z=3-s \end{array} \right.,\, s\in \mathbb{R}$$

8 Dans l'espace muni d'un repère orthonormé $(0, \vec{\imath}, \vec{\jmath}, \vec{k})$, on considère les quatre points A(-1; 1; 2), B(1;0;-1), C(0;3;1) et D(-8;2;-3).

- 1. Démontrer que les points A, B et C définissent bien un plan.
- 2. Démontrer que \overrightarrow{AD} est un vecteur normal à ce plan.

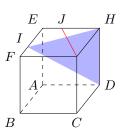
9 On considère un cube ABCDEFGH d'arête 1. Soient I et J les milieux respectifs de [BC] et [EH] et K le centre de la face CDHG.



En travaillant dans un repère orthonormé bien choisi :

- 1. Démontrer que les points A, I, G et J sont copla-
- 2. (a) Démontrer que (FK) est orthogonale à (IJ);
 - (b) Démontrer que (FK) est orthogonale à (AI);
 - (c) en déduire que (FK) est orthogonale au plan (AIG).

10 On considère un cube ABCDEFGH d'arête 1. Soient I et J les points tels que $\overrightarrow{EI} = \frac{2}{3}\overrightarrow{EF}$ et $\overrightarrow{EJ} =$ $\frac{1}{3}\overrightarrow{EH}$.



- 1. Démontrer que (GJ) est perpendiculaire à (IH).
- 2. Démontrer que (GJ) est orthogonale à (HD).
- 3. En déduire que (GJ) est orthogonale à (ID).